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Abstract—In this paper we present certain shape descriptors
from the literature that enable real-time contour matching.
We propose slight modifications to these descriptors and more
importantly provide fast and efficient matching techniques that
return distances between shapes in the order of milliseconds.
We show that applying these instead of more time consuming
matching algorithms matching accuracy remains the same but the
speed is at least 10 times faster. We show results on the MPEG7
benchmark. Using our matching we improve some scores from
the literature, this is mainly due to the aligning of the shapes
and the usage of the L1 metric.

Index Terms—Image processing; shape descriptors; contour
matching; object classification; MPEG7 benchmark; shape con-
text descriptor.

I. INTRODUCTION

Determining whether or not two different shapes are the
representations of a single object is an important task in
computer vision. This can be handled by shape matching.
Applications range from content-based annotation/retrieval to
medical imaging, tracking, etc. Throughout the years solutions
to this problem gave rise to numerous shape descriptors and
countless matching techniques. Shape or contour descriptors
characterize the boundary of an object by a vector which
can be easily matched and also possesses certain important
properties such as invariance to translation, scaling, rotation
and deformations.

In this paper we focus on selecting and appropriately
modifying available contour descriptors. More importantly, we
focus on providing matching techniques that perform fairly
well and require small execution time. A very fast matching
technique is a necessity when KNN retrieval is executed on
large shape databases and also for real-time shape matching
applications. Even though there are numerous proposed meth-
ods both for descriptors and matching algorithms, most of
them need about one second for matching two shapes. This
is clearly not feasible for real-time contour matching where
thousands of shape comparisons must take place in a fraction
of a second.

II. RELATED WORK

The technical literature is abundant with methods that tackle
the shape matching problem. Three main approaches exist.

The first category characterizes the entire contour by a
global descriptor. Elliptic Fourier[1], [2] descriptors, Contour
Points Distribution Histogram[3], invariant moments[4], etc.

Global descriptors are robust to noise but fine details of the
shape contour are lost.

In the second category descriptors are based on a hierar-
chical representations of the object[5], [6], [7], [8]. These
approaches usually require some prior knowledge such as the
number of parts and rely on statistical methods to describe the
relationships between the parts. This is learned from multiple
examples. They can achieve better matching performance than
global descriptors, however, for tasks with limited training
samples are available or complex shapes they are hard to apply.

The third category methods associate to the parts of the
shape [9], [10] or to each contour point a separate descriptor -
local shape descriptor[11], [12]. We will focus on this type in
the paper. Shape context is an important contribution. It was
defined by Belongie et al.[13]. It describes the distribution of
the other contour points around a single point. Inner distance
shape context[14] extends the previous method by providing a
more useful alternative for distance and angle calculations.
Other approaches use curvature[15] which measures how
fast the unit tangent vector to a curve rotates but necessary
adjustments need to be made for the case where the contour
is given by a set of discrete points. Flexibility[16] measures
the bendable potential of a point. This identifies whether or not
the point belonging to the object could move in other possible
articulations. Paper [17] presents a method for populating the
shape space with ghost-points. The points are introduced in
such a way as to make the original metric space more dense
while maintaining correct structure (metric space embedding).
This improves the accuracy of the matching algorithms.

One can consider a global descriptor by concatenating
the local descriptors to form a large vector. This is partic-
ularly useful for fast matching techniques. However, it is
known that higher retrieval rate is assured by devising spe-
cific matching techniques based on the pair-wise similarities
of local descriptors between two different contours. Such
matching methods are: assignment cost minimization using
dynamic programming[13],[14], dynamic time warping[16],
earth mover’s distance[3]. These aggregate local descriptor
distances in a global similarity. In most cases these similarity
measures arise as solutions to optimization problems.

Further improvement is possible on the final similarity
matrix defined between contours. This is possible by using
different meta-similarity measures which correct the similarity
matrix based on KNN information [18], [19], [20], [17].

Other works aiming at obtaining fast contour matching



include [21], but there the focus is on retrieval time reduction
by pruning. In their approach they have used L2 distance for
histogram matching instead of the original χ2.

III. SHAPE DESCRIPTORS

This section describes the contour descriptor types utilized
in this work. Most of the descriptors are taken from the
literature. We additionally provide a simple alternative which
behaves relatively well. For every descriptor type we state
clearly what are our contributions or modifications if there
are any. These are necessary to enable the fast matching that
is our goal.

The shape descriptor extraction procedure requires a list of
2D points which represent the boundary points of an object.
The result of the procedure is a vector which characterizes the
contour. The length of this vector is dependent on the method
used as well as specific parameters, but for the same algorithm
the vector length is constant.

Shape descriptor extraction is commonly preceded by a
sampling phase where only a subset of the contour points is
retained. This is done here in a uniform way although one can
grant more importance to points where the contour changes
orientation - as in [16]. The sampling ensures that all resulting
contours will have the same number of points.

In the subsequent sections the following notations are used.
Landmarks (samples) from the contour points are notated with
xi ∈ R2. The fixed number of samples or landmarks obtained
through sampling is N . Descriptors for two arbitrary contours
are termed p and q. p, q ∈ RND, where D is the dimension-
ality of the local shape descriptor. More specifically, p is the
global descriptor, while pi is the local descriptor corresponding
to landmark xi, which in turn can be a vector (e.g. in the case
of the inner distance shape context). Summation notation over
global descriptor vectors presumes i ∈ 1, N .

A. Polar Contour Points - PCP

We propose an elementary shape descriptor that is basically
the representation of the contour samples in a polar space.
This means that dimension of the feature vector is N and
D = 1. This transformation is achieved by finding the center
of mass of the samples, denoted by c. Afterwards, the points
are translated so that the center of mass is the origin and we
retain only the radii values. This operation achieves translation
invariance. A normalization of the obtained values grants scale
invariance to the descriptor. This normalization is in most
cases achieved by dividing with the maximum radius. Another
possibility is to divide all values by the L2 norm of the global
vector. This transformation produces a one dimensional vector
from a list of 2D points. The advantage of this representation
is that it ensures the before mentioned properties and it is
compact.

The descriptor values for landmarks xi are given by the
following equation:

pi =
||xi − c||

maxj{||xj − c||}
, i ∈ 1, N (1)

B. Contour Points Distribution Histogram - CPDH
Shu et al. in [3] define a histogram as the global shape

descriptor vector. The steps of the extraction algorithm are
presented in the following. Firstly, the minimum circumscribed
circle is found for the given shape. Afterwards, the area of disk
enclosed by circle is partitioned based on the angle and the
distance from the center. Let nd be the number of distance
partitions (or bins) and nθ be the number of angle partitions.
The histogram has nd·nθ bins and the histogram value for each
bin is equal to the number of points from its corresponding
partition. This is essentially the discrete distribution of the
contour points in the polar space. For this global descriptor
the dimension is nd · nθ, which is more compact than for the
polar contour points, but information is lost. This dimension
remains the same regardless of the number of points used,
this is why the entire set of contour points is employed for
histogram calculation.

C. Inner Distance Shape Context - IDSC
Shape context - SC - defined in [13] describes the relative

distribution of the contour points around a selected individual
contour point. More precisely, it is given by the distribution
of the vectors to the other points in log-polar space. For point
i the histogram is defined as:

hi(k) = |{xj : j 6= i, xi − xj ∈ bin(k)}| (2)

The histogram has nd distance bins and nθ angle bins. We
subtract the angle of the tangent at pi from the angle of the
vector xi − xj when determining which bin it belongs to.
This is similar to the inner distance and the reason for it is to
achieve rotation invariance. However, in some cases this effect
is not desirable. The contour will be characterized by a vector
of dimension N ·D,D = nd · nθ, where each point from the
shape is described by its corresponding shape context. This
descriptor is significantly larger than the preceding ones.

The inner distance variant of the shape descriptor is given
in [14]. Instead of binning the vectors based on the L2 norm
and their angle the inner distance and inner angle is employed.
Inner distance between two contour points is defined as the
shortest path between the two points that is entirely inside the
shape. This path can be obtained by considering the contour
points as vertices of a graph and running a shortest path
algorithm (Floyd-Warshall, Bellman-Ford). The inner angle at
a contour point to another one is the angle enclosed by the
direction of the first segment from the shortest path between
them and the tangent at the contour point. The inner distance
has the important property of being insensitive to articulations,
meaning that it remains constant if the object’s parts move
relative to each other around certain common junctions. Inner
distance shape context descriptor extraction requires O(N3)
operations because of the shortest-path algorithm, however this
does not affect the matching time.

IV. REAL-TIME CONTOUR MATCHING

In order to enable fast matching the distance calculation
between two global descriptors must take place in less than



O(N2 ·D). This practically excludes popularly used matching
algorithms such as: Dynamic Programming based matching
is O(N2 · D), D ≥ 1 [13], [14], [22] because of the pair-
wise distance calculations, Earth Mover Distance[3] - at least
O(N2 · D), chamfer distance O(N2 · D)[23], [24], [25] and
other matching techniques based on optimization problems.

A. Distance types

In this section we enumerate different metrics employed in
global shape descriptor matching. Two of the most common
Lp metrics provide the baseline. These are applied on the
global shape descriptor which is the concatenation of the local
shape descriptors.

dL1 =
∑
i

|pi − qi| (3)

dL2 =

√∑
i

(pi − qi)2 (4)

We tested three additional distance types which are espe-
cially useful for histograms: χ2, histogram intersection and
Kullback-Leibler divergence (in order to avoid 0 and ∞ we
add ε = 10−5 to the histograms).

dχ2 = 0.5 ·
D∑
k=1

(pk − qk)2

pk + qk
(5)

dmin = 1−
∑D
k=1min{pk, qk}

min{
∑D
k=1 pk,

∑D
k=1 qk}

(6)

dKL =

D∑
k=1

pklog
pk
qk

(7)

By considering the descriptor as a continuous function we
can define a distance based on an inner-product. We notate two
arbitrary descriptors as functions f and g respectively, which
are periodic of period N . We use the canonical inner product
which is given by:

< f, g >=

∫ N

0

f(t)g(t)dt (8)

One can consider the angle between the two functions as
a similarity measure. This is sometimes called the Procrustes
distance. It can be derived using the inner product:

θ = cos−1
< f, g >

||f || · ||g||
(9)

In our case several simplifications can be made. Firstly,
since the descriptor is a finite vector the integrals translate
to sums. Secondly, if we normalize the descriptor vectors at
extraction time by their L2 norms the denominator becomes
one and vanishes from (9). Lastly, in order to obtain a distance
there is no need to compute the inverse cosine, it suffices to
invert the dot product and add one to assure positivity. This
gives us the inner product based distance:

dip = 1− pT q = 1−
∑
i

pi · qi (10)

This is applicable in cases where vector elements are scalars.
It is also valid for 2D points if we consider the elements pi
to be complex numbers.

B. Rotational invariance and mirroring

In our framework rotational and mirroring invariance is
achieved at the matching phase. There is a possibility to align
the descriptors based on the minimum momentum at extraction
time, however this is not explored since it is prone to errors.
To define a metric between two shapes that ignores rotational
transformations we consider several orientations of the second
shape. The minimal distance of the first shape and the rotated
second shape is considered as the distance. Rotating practically
implies translating the index of the second descriptor in the
distance sums. Of course, the periodicity forces this translation
to be taken in mod N . Since all distances defined require
N operations the number of different rotations considered
increases the time complexity by a factor of K, K being the
number orientations taken into consideration. We provide the
formula for the L1 distance, which can be easily generalized
for the other distance types as well. The K rotation-invariant
distance between descriptors p and q is given by:

ρ(p, q) = mink{ρk(p, q)} := mink{
∑
i

|pi − q(i+k)modN |}

(11)
In the last equation k = jNK , j ∈ 1,K. Note, that ρ is

symmetric only if k|N , because in this case rotating contour
q by k is equivalent to rotating p by N − k.

In the case of the CPDH descriptor adjustments have to
made to equation (11) to rotate the descriptors only in the angle
bins. When using the SC or IDSC pi and qi are themselves
vectors so the absolute value function is replaced by some
norm of the difference (L1, χ2). Since the inner angle is
invariant to rotation, it is not necessary to rotate the local
IDSC descriptors. However, local descriptors may not be in
the same order forcing the verification of different alignments
for optimal matching. The same remarks hold for mirrored
matching.

Mirrored matching is obtained by considering the second
descriptor in reverse order. This includes both the horizontal
and the vertical flip of the contour. The K mirrored rotation-
invariant distance between descriptors p and q is given by:

µ(p, q) = mink{µk(p, q)} := mink{
∑
i

|pi− q(−i+k)modN |}

(12)
We encompass the results from the previous metrics in a

single distance that accounts for both rotation and mirroring:

dRM (p, q) = min{ρ(p, q), µ(p, q)} (13)



C. Heuristic for distances

The resulting matching technique from the previous section
has the complexity O(K · N ·D). In order to further reduce
the complexity we propose a heuristic. At summations we con-
sider some subset points sampled equidistantly from original
landmarks. The reduced number of samples is M < N . We
find the angles (indexes) which minimize the following sums:

α = argmink{
M∑
m=0

|pmh − q(mh+k)modN |} (14)

β = argmink{
M∑
m=0

|pmh − q(−mh+k)modN |} (15)

Where k = jNK , j ∈ 1,K and h = N
M . The final distance

makes use of the optimal angles to find the distance calculated
with all contour landmarks:

d∗RM (p, q) = min{ρα(p, q), µβ(p, q)} (16)

This matching algorithm has the time complexity,
max{O(K · M · D), O(N · D)}, but usually K · M > N .
The advantage here is that we align the shapes based on some
reduced number of points and in most cases this is sufficient
to obtain to good guess. At the end we use the full descriptor
to find the true distance.

D. Flexible matching - invariance to small deformations

Flexible matching entails relaxing the one-to-one corre-
spondence between the feature vector elements at distance
calculation. More precisely, descriptor element pi from the
first vector is matched to the closest descriptor in a limited
neighborhood of qi. In this sense the ρkL1 distance is modified
as ( the form for µ∗k is analogous):

ρ∗k(p, q) =
∑
i

min
l
{|pi − q(i+k+l)modN |}, l ∈ [−δ, δ] (17)

This technique is applicable to every distance type defined
and is especially useful for more descriptive features such
as the IDSC. The operations would multiply the matching
complexity with a factor of ∆ = 2δ + 1 if it were applied
for every angle. However, this can be used only at the optimal
angle to avoid this effect. More specifically, we use (14) and
(15) to find the optimal alignment angles and calculate the
final distance using flexible matching. By considering a small
neighborhood we loose the symmetry of the matching function
but we gain in robustness.

d∗RM (p, q) = min{ρ∗α(p, q), µ∗β(p, q)} (18)

Fig. 1: Mapping order for greedy matching for N = 16

E. Layered Greedy Matching

We propose a greedy matching scheme. This associates
local descriptor pi to the closest local descriptor qj . Matching
is exclusive, meaning that each qj can only be used once.
To avoid unrealistic alignment of the first descriptors, local
descriptors from p are considered in a specific order (Fig. (1)).
This order is given by the following fractions of the descriptor
size N :
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l is the number of levels considered, if N is not divisible
by 2l the integer part function is applied. One can view this
as matching the descriptors at a coarse level than refining the
score using more and more points. This ensures a good global
matching. An even more efficient strategy limits the maximum
match cost between two local descriptors by a factor τG.

By stopping before all the indexes are exhausted - 2l−1−1
2l

=
L < N - matching complexity remains below O(N2 ·D) but
this is the most time consuming of the techniques presented
here. This is related to the chamfer(21) distance. However,
here the matching is exclusive and it is done in a specific
order. Also chamfer distance is applied directly on the contour
points using distance transform.

dG =

L∑
i=1

minj∈Ji |pσ(i) − qj |, (20)

J1 = 1, N, Jn+1 = Jn − argminj |pσ(n) − qj |

dch(p, q) =
1

N

∑
i

minj{|pi − qj |} (21)

F. Assignment cost minimization

This method was used in [13], [14]. It is presented here
to show speed differences. It involves minimizing the total
assignment cost which is efficiently solved through dynamic
programming:

dDP = minπ
∑
i

c(pi, qπ(i)) (22)

where π is the mapping of indexes from the first descriptor
to the second. It is increasing so that the order of the landmarks
is preserved. c(pi, qj) is the cost of the assignment and takes
the value of the distance d(pi, qj) or τ if pi is not assigned.
Superior performance of the DP matching can be justified by
the fact that it allows flexible matching and also it is possible to
not assign some noisy descriptors at all. The time complexity
of the algorithm is O(N2 · D). If we consider again several



different orientations for the second descriptor the complexity
is multiplied by K.

V. IMPLEMENTATION DETAILS

All test times provided are obtained on a machine with
Intel 2.4GHz two core processor and 8GB RAM. Contour
extraction starts from the leftmost and highest point and
proceeds by having the interior of the contour on the left. We
have implemented the algorithms in C and have used multiple
threads for execution.

All rotation and modulo operations can be carried out
efficiently by copying the second descriptor after itself in
the memory. This enables iterating through the sums without
calculating modN every time. The mirroring is obtained by
creating a copy in inverse order of the second descriptor.
Further optimization is possible by using Streaming SIMD
Extensions which greatly increase the speed of floating oper-
ations on vectors. Speed boost is obtained by compiling our
source code with Intel C++ Composer XE 2011 compiler.

VI. EXPERIMENTAL RESULTS

We have performed two types of experiments in order to
validate the exposed methods. It is a well accepted procedure
to test contour descriptors on benchmarks such as the MPEG7,
Swedish Leaf or Kimia dataset. We provide retrieval rate
results for all of the methods on the MPEG7 dataset. This
dataset contains 70 types of objects with 20 images each.
During retrieval the 40 most similar shapes must be returned
for every shape from the database. Retrieval rate represents the
sum of the number of correct retrievals (that share the same
class as the query contour) divided by the possible maximum
number of correct answers (1400x20). It is also called bull’s
eye score.

Best bull’s eye scores from the literature are in the range
75-89% (shape context 75%[13], IDSC 85%[14], flexibility
89%[16]). These include only methods that do not use meta-
similarity measures. Meta shape similarities are applied after
the distances between shapes are found as a postprocessing
step and can boost the recall rate with 4-8%.

In Table (IV) we provide the recall rates on the MPEG7
database using different descriptor types (see Table (I) for
descriptor parameters) and matching techniques (see Table
(II)). Our implementation results are close those reported in
[14]. It is important to note that we obtain above 80% with
SC with our matching as opposed to the original 76%. This
is due to rotational matching and the L1 metric. The speed
gain is obvious and significant. A single shape comparison
takes place in 0.3 seconds as reported in [14] while here, we
obtain 1400x700 comparisons in 4700 seconds in the case
of the same DP matching (4ms for one comparison) and an
even lower 500 seconds (0.5ms for one comparison) using the
proposed matching technique d∗RM . Our matching technique
obtains approximately the same recall value for the same
underlying features but is at least 10 times faster compared to
DP matching. Greedy matching is both slower than d∗RM and
weaker with 1-2% but still performs well. Without the specific

TABLE I: Shape descriptor parameters

Descriptor N nd nθ time exec
fourier 200 - - O(N) -

CPDH - 5 80 O(N) 0.1

PCP 500 - - O(N) 0.02

SC 300 8 12 O(N2) 40.3

IDSC 300 8 12 O(N3) 123.2

N is the number of contour samples, nd the number of
distance bins, nθ the number of angle bins (where applicable).
Column time gives the time complexity of the descriptor
extraction procedure. Execution time refers to global run time
for obtaining all 1400 descriptors.

TABLE II: Time complexities of different matching algorithms

Method compl. Method compl.
Lp O(N ·D) dip, d

2
χ O(N ·D)

dRM O(K ·N ·D) d∗RM O(K ·M ·D)

dG O(L ·N ·D) ddp O(K ·N2 ·D)

chamfer O(N2 ·D) EMD Ω(N2 ·D)

Since local descriptors may be histograms of length D every
complexity contains D. Different implementations of EMD
exist but all are above N2.

TABLE III: Effect of distance type when comparing his-
tograms

L1 L2 χ2 dmin KL dip

score 78.1% 68.7% 76% 73.8% 65.6% 47.4%

time 1 1.14 5.42 1.5 9.69 1.07

ordering greedy matching performs worse when L approaches
N , e.g. on a simple test 77.8% as opposed to 79.3%. Also
note, that the naive PCP method performs relatively well while
being much faster both at extraction time and matching time.

We have tested all the distance functions enumerated. In
almost all cases L1 distance performs best while being also
the fastest. Very similar results are obtained using χ2. Gen-
eral observation is that L2 is poor for contour matching.
Typical score values are given in Table (III) using SC with
N = 50,K = 1, nθ = 6, nd = 4. The second line indicates
relative execution times obtained by dividing with L1 case.
dip is well suited for global descriptors and not for histograms.
PCP with dip achieves a score that is 0.3% lower than with
L1.

Another ad hoc experiment that is undertaken uses a more
realistic dataset and aims at utilizing the fastness of the match-
ing methods. We apply a retrieval based shape classification on
contours that represent human body postures. We have worked
with 9 pose classes: standing, walking, running, bowing-down,
jumping, crouching, waving, kicking, punching(see Figure (2)).
The contour database is obtained from the depth images pro-
vided by Microsoft Kinect motion sensing input device. The
depth sensor consists of an infrared laser projector combined



(a) walking (b) kicking (c) punching (d) jumping

Fig. 2: Sample contours obtained from Kinect depth images

TABLE IV: Retrieval rates from the MPEG7 dataset

Method Score K/L M Match comp. exec
fourier + L1 55% - - O(1) -

PCP + dip 73.5% 200 - O(N ·K) 58s

PCP + dRM 73.7% 200 - O(N ·K) 40s

CPDH + dRM 74.0% 80 - O(nd · nθ ·K) 35s

IDSC + greedy 77.9% 128 - O(N ·D · L) 1360s

IDSC + d∗RM 77.9% 50 20 O(M ·D ·K) 144s

IDSC + DP 80.2% 8 - O(N2 ·D) 4700s

SC + greedy 80.8% 128 - O(N ·D · L) 257s

SC + d∗RM 81.3% 100 100 O(N2 ·D) 500s

SC + DP 82.5% 8 - O(N2 ·D) 10120s

The first column indicates the descriptor type and the distance
used for matching. K is the number of rotations considered
K < D. L denotes the number of points used for greedy
matching with L < D. The last column indicates the time
necessary to compute the pairwise distances of all 1400 shapes
(essentially 1400x700 matches).

with a monochrome CMOS sensor, which captures video data
in 3D under any ambient light conditions. Shape context
descriptors are extracted from the contours provided in real-
time and the closest contour from the training database is
retrieved. This means that both extraction and retrieval must
be done between two frames. Using SC+d∗RM with N = 100
we can classify 30 per second for every frame provided by
the device while DP matching enables only 15 or less. The
contour is then classified as being in the same class as the
returned shape from the prototype database. We have obtained
a classification accuracy of 91% for our noisy pose contours
with SC+d∗RM .

VII. CONCLUSION

The aim of this work was to establish a handful of shape
matching methods that perform well and are also fast. This is
necessary for real-time applications. Even though the technical
literature is abundant with existing methods that perform
excellent on synthetic databases they are usually very slow.
Our goal was to find a compromise between shape descriptor
and matching complexity and fastness. To this end we have
made use of several well established contour descriptors and
implemented them along with some proposed modifications.

We have proposed a matching technique that relies on
checking different contour orientations at match time. This

is done efficiently while maintaining matching accuracy. This
claim is demonstrated by the experimental results which show
that this technique gives the same results as some more time-
consuming variants. This proves that it is excellent for fast
shape matching.
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